Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Comparative studies rely on the identification of homologous traits, which is challenging especially when adult stages alone are available. Inferring homology from developmental series represents the most reliable approach to recognize similar phenotypes. The primate nasal cavity exhibits a plastic morphology (shape) and topology (structure) which challenge the terminology of turbinals. Turbinal development largely corresponds to the therian template: turbinals emerge from the cartilaginous nasal capsule, ossify endochondrally, and increase their size through appositional bone growth. We studied histological serial sections and µCT data of eleven primate species in six genera representing four to five age stages (fetal to adult), and the neonate and adult stage of another primate species. We reconstructed cartilaginous precursors and followed their growth patterns until adulthood to inform the identification of structures. The developmental stages were transformed to character states for better comparison across the sample. Strepsirrhines conserved the plesiomorphic condition, with turbinal morphology similar to other placentals. In contrast, haplorhines showed a reduced turbinal number. Most strikingly, some cartilaginous turbinals are absent in the ossified nasal cavity (Saguinus); others seem to emerge as appositional bone without a cartilaginous precursor (Aotus,Pithecia). Our observation that successive developmental sequences differ from the established placental template emphasizes the significance of ontogenetic series for comparative anatomy. Structures which exhibit analogous growth patterns might be falsely considered as being homologous in adults, resulting in biased phenotypic data that strongly affects comparative analyses (e.g., phylogenetic reconstructions).more » « less
-
Abstract This special issue of The Anatomical Record is inspired by and dedicated to Professor Kunwar P. Bhatnagar, whose lifelong interests in biology, and long career studying bats, inspired many and advanced our knowledge of the world's only flying mammals. The 15 articles included here represent a broad range of investigators, treading topics familiar to Prof. Bhatnagar, who was interested in seemingly every aspect of bat biology. Key topics include broad themes of bat development, sensory systems, and specializations related to flight and diet. These articles paint a complex picture of the fascinating adaptations of bats, such as rapid fore limb development, ear morphologies relating to echolocation, and other enhanced senses that allow bats to exploit niches in virtually every part of the world. In this introduction, we integrate and contextualize these articles within the broader story of bat ecomorphology, providing an overview of each of the key themes noted above. This special issue will serve as a springboard for future studies both in bat biology and in the broader world of mammalian comparative anatomy and ecomorphology.more » « less
-
Abstract Nasal anatomy in rodents is well-studied, but most current knowledge is based on small-bodied muroid species. Nasal anatomy and histology of hystricognaths, the largest living rodents, remains poorly understood. Here, we describe the nasal cavity of agoutis ( Dasyprocta spp.), the first large-bodied South American rodents to be studied histologically throughout the nasal cavity. Two adult agoutis were studied using microcomputed tomography, and in one of these, half the snout was serially sectioned and stained for microscopic study. Certain features are notable in Dasyprocta . The frontal recess has five turbinals within it, the most in this space compared to other rodents that have been studied. The nasoturbinal is particularly large in dorsoventral and rostrocaudal dimensions and is entirely non-olfactory in function, in apparent contrast to known muroids. Whether this relates solely to body size scaling or perhaps also relates to directing airflow or conditioning inspired air requires further study. In addition, olfactory epithelium appears more restricted to the olfactory and frontal recesses compared to muroids. At the same time, the rostral tips of the olfactory turbinals bear at least some non-olfactory epithelium. The findings of this study support the hypothesis that turbinals are multifunctional structures, indicating investigators should use caution when categorizing turbinals as specialized for one function (e.g., olfaction or respiratory air-conditioning). Caution may be especially appropriate in the case of large-bodied mammals, in which the different scaling characteristics of respiratory and olfactory mucosa result in relative more of the former type as body size increases.more » « less
-
null (Ed.)The sphenoid bone articulates with multiple basicranial, facial, and calvarial bones, and in humans its synchondroses are known to contribute to elongation of the skull base and possibly to cranial base angulation. Its early development (embryological, early fetal) has frequently been studied in a comparative context. However, the perinatal events in morphogenesis of the sphenoid have been explored in very few primates. Using a cross-sectional age sample of non-human primates (n=39; 22 platyrrhines; 17 strepsirrhines), we used microcomputed tomographic (µCT) and histological methods to track age changes in the sphenoid bone. In the midline, the sphenoid expands its dimensions at three growth centers, including the sphenooccipital, intrasphenoidal (ISS) and presphenoseptal (PSept) synchondroses. Bilaterally, the alisphenoid is enlarged via appositional bone growth that radiates outward from cartilaginous parts of the alisphenoid during midfetal stages. The alisphenoid remains connected to the basitrabecular process of the basisphenoid via the alibasisphenoidal synchondrosis (ABS). Reactivity to proliferating cell-nuclear antigen is observed in all synchondroses, indicating active growth perinatally. Between mid-fetal and birth ages in Saguinus geoffroyi , all synchondroses decrease in the breadth of proliferating columns of chondrocytes. In most primates, the ABS is greatly diminished by birth, and is likely the earliest to fuse, although at least some cartilage may remain by at least one-month of age. Unlike humans, no non-human primate in our sample exhibits perinatal fusion of ISS. A dichotomy among primates is the orientation of the ABS, which is more rostrally directed in platyrrhines. Based on fetal Saguinus geoffroyi specimens, the ABS was initially oriented within a horizontal plane, and redirects inferiorly during late fetal and perinatal stages. These changes occur in tandem with forward orientation of the orbits in platyrrhines, combined with downward growth of the midface. Thus, we postulate that active growth centers direct the orientation of the midface and orbit before birth.more » « less
-
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) has emerged as a viable tool for discriminating soft tissues in serial CT slices, which can then be used for three-dimensional analysis. This technique has some potential to supplant histology as a tool for identification of body tissues. Here, we studied the head of an adult fruit bat ( Cynopterus sphinx ) and a late fetal vampire bat ( Desmodus rotundus ) using diceCT and µCT. Subsequently, we decalcified, serially sectioned and stained the same heads. The two CT volumes were rotated so that the sectional plane of the slice series closely matched that of histological sections, yielding the ideal opportunity to relate CT observations to corresponding histology. Olfactory epithelium is typically thicker, on average, than respiratory epithelium in both bats. Thus, one investigator (SK), blind to the histological sections, examined the diceCT slice series for both bats and annotated changes in thickness of epithelium on the first ethmoturbinal (ET I), the roof of the nasal fossa, and the nasal septum. A second trial was conducted with an added criterion: radioopacity of the lamina propria as an indicator of Bowman’s glands. Then, a second investigator (TS) annotated images of matching histological sections based on microscopic observation of epithelial type, and transferred these annotations to matching CT slices. Measurements of slices annotated according to changes in epithelial thickness alone closely track measurements of slices based on histologically-informed annotations; matching histological sections confirm blind annotations were effective based on epithelial thickness alone, except for a patch of unusually thick non-OE, mistaken for OE in one of the specimens. When characteristics of the lamina propria were added in the second trial, the blind annotations excluded the thick non-OE. Moreover, in the fetal bat the use of evidence for Bowman’s glands improved detection of olfactory mucosa, perhaps because the epithelium itself was thin enough at its margins to escape detection. We conclude that diceCT can by itself be highly effective in identifying distribution of OE, especially where observations are confirmed by histology from at least one specimen of the species. Our findings also establish that iodine staining, followed by stain removal, does not interfere with subsequent histological staining of the same specimen.more » « less
-
Abstract ObjectivesThe aim of the present study is to broaden our knowledge of the ontogeny of cranial base cartilaginous joints in primates. Materials and MethodsA cross‐sectional age sample of 66 specimens from four platyrrhine and three strepsirrhine genera were studied using microcomputed tomography, histology, and immunohistochemistry. Specimens were segmented, reconstructed, and measured using Amira software. Ontogenetic scaling of palatal, presphenoid, and basisphenoid length relative to cranial length was examined using standardized major axis regression. After histological sectioning, selected specimens were examined using immunohistochemistry of antibodies to proliferating cell nuclear antigen. ResultsOur results support the hypothesis that the presphenoid in platyrrhines grows more rapidly compared with strepsirrhines, but this study establishes that most or all of this growth discrepancy occurs prenatally, and mostly at the presphenoseptal synchondrosis (PSept). All species have prolonged patency (here meaning absence of any bony bridging across the synchondrosis) of the intrasphenoidal and spheno‐occipital synchondroses (ISS). However, immunohistochemical results suggest growth is only rapid throughout infancy, and mitotic activity is slowing during juvenile ages. The same is indicated for the PSept. DiscussionThese results demonstrate that platyrrhines and strepsirrhines do not follow the pattern of early fusion of ISS seen in humans. In addition, these primates have a more prolonged patency and growth at PSept compared with humans. Finally, results reveal that in bushbabies and tamarins, as in humans, synchondroses remain cartilaginous for a prolonged period after chondrocyte proliferation has slowed or ceased. In light of these results, it is time to reassess related processes, such as differences in timing of brain expansion.more » « less
An official website of the United States government
